
Assembly Reference
This is a reference for Intel syntax x86 assembly.

General-Purpose Registers

The following are general-purpose 32-bit registers that you can use in your calculations: eax, ebx, ecx, edx, edi, esi.

The low 16 bits of each of these registers is available under the following names: ax, bx, cx, dx, di, si.

The low 8 bits of each of these registers is available under the following names: al, bl, cl, dl, dil, sil.

Arithmetic

• add op1, op2
– Adds two the two operands, storing the result in the first operand.
– e.g., add eax, 1 is equivalent to eax = eax + 1.

• sub op1, op2
– Subtracts the two operands, storing the result in the first operand.
– e.g., sub eax, ebx is equivalent to eax = eax - ebx.

• imul op1, op2
– Multiplies the two operands, storing the result in the first operand.
– e.g., imul ebx, -1 is equivalent to ebx = ebx * -1.

• lea op1, [op2 + op3 * op4 + op5]
– All-in-one math instruction. Computes op2 + op3 * op4 + op5, storing the result in op1.
– This instruction does not access memory. Don’t let the brackets fool you!
– There are significant limitations on the valid operands to this instruction. Play with it, and see what assembles.
– e.g., lea eax, [ebx + esi * 8 - 1] is equivalent to eax = ebx + esi * 8 - 1.

• inc op
– Adds 1 to the operand.
– e.g., inc eax is equivalent to eax++.

• dec op
– Subtracts 1 from the operand.
– e.g., dec eax is equivalent to eax--.

Bitwise Operations

• shl op1, op2
– Shifts the first operand left by the number of bits specified in the second operand.
– e.g., shl eax, 5 is equivalent to eax = eax << 5.

• shr op1, op2
– Shifts the first operand right by the number of bits specified in the second operand.
– e.g., shr edi, ebx is equivalent to edi = edi >> ebx.

• xor op1, op2
– XORs the two operands, storing the result in the first operand.
– e.g., xor ecx, ecx is equivalent to ecx = ecx ˆ ecx.

• or op1, op2
– ORs the two operands, storing the result in the first operand.
– e.g., or eax, 0x0000FFFF is equivalent to eax = eax | 0x0000FFFF.

• and op1, op2
– ANDs the two operands, storing the result in the first operand.
– e.g., and edx, ecx is equivalent to edx = edx & ecx.

• not op
– Flips all the bits in the operand.
– e.g., not ebx is equivalent to ebx = ebx ˆ 0xFFFFFFFF.

Stack Operations

• push op
– Pushes op onto the stack.

• pop op
– Pops op from the stack

1

Subroutine Operations

• call label
– Calls the subroutine at label.

• ret
– Returns from a subroutine.

Reading/Writing

• mov op1, op2
– Copies the value of the second operand into the first operand. The first operand must be either a register or

memory location.
– e.g., mov esi, 5 is equivalent to esi = 5.
– e.g., mov BYTE PTR [esi], 5 is equivalent to *(uint8_t *)esi = 5.

• movsx op1, op2
– Copies the value of the second operand into the first operand, sign-extending. The second operand must
– e.g., movsx ebx, al is equivalent to ebx = (int8_t)al < 0 ? 0xFFFFFF00 | al : 0x00000000 | al

• movzx op1, op2
– Copies the value of the second operand into the first operand, zero-extending.
– e.g., movzx ebx, al is equivalent to ebx = 0x00000000 | al

Labels and Unconditional Jumps

A label is a name attached to a location in your assembly code.

• jmp label
– Takes a label as its operand, and changes sets the instruction pointer to that label’s value.
– This should remind you of goto from C.

For example, the following is an infinite loop that increments ebx forever:

my_label_name:
add ebx, 1
jmp my_label_name

Comparison

• cmp op1, op2
– Compares the two operands via subtraction so that conditional jumps can be executed.

• test op1, op2
– Compares the two operands via bitwise AND so that conditional jumps can be executed.
– You’ll most commonly see test used with op1 and op2 being the same. This is roughly equivalent to cmp op1, 0,

but is slightly faster.

Conditional Control Flow

• jg label
– Jumps to label if the first operand of the preceding cmp instruction was greater than the second operand (signed).

• jge label
– Jumps to label if the first operand of the preceding cmp instruction was greater than or equal to the second

operand (signed).
• jl label

– Jumps to label if the first operand of the preceding cmp instruction was less than the second operand (signed).
• jle label

– Jumps to label if the first operand of the preceding cmp instruction was less than or equal to the second operand
(signed).

• je label
– Jumps to label if the first operand of the preceding cmp instruction was equal to the second operand.

• jne label
– Jumps to label if the first operand of the preceding cmp instruction was not equal to the second operand.

• ja label
– Jumps to label if the first operand of the preceding cmp instruction was greater than the second operand (unsigned).

• jae label

2

– Jumps to label if the first operand of the preceding cmp instruction was greater than or equal to the second
operand (unsigned).

• jb label
– Jumps to label if the first operand of the preceding cmp instruction was less than the second operand (unsigned).

• jbe label
– Jumps to label if the first operand of the preceding cmp instruction was less than or equal to the second operand

(unsigned).

For example, the following will jump to some_label if ebx is 1, and do nothing otherwise:

cmp ebx, 1
je some_label

Miscellaneous

• nop
– Short for “no operation.” Does nothing.

3

	Assembly Reference
	General-Purpose Registers
	Arithmetic
	Bitwise Operations
	Stack Operations
	Subroutine Operations
	Reading/Writing
	Labels and Unconditional Jumps
	Comparison
	Conditional Control Flow
	Miscellaneous

