
Debugging
GDB, the GNU Debugger, is a program that makes it easy to inspect the execution of other programs. We will be using it
extensively in this class.

Opening GDB
To invoke GDB on an executable named a.out, run (in the shell)

gdb a.out

Alternatively, you can start GDB without specifying an executable, then select an executable using gdb’s file command:

gdb
(gdb) file a.out

Running Programs in GDB
Once a program is loaded in GDB, you can run it with the run (or r) command:

(gdb) run

If you want to pass command line arguments to your program, you can pass them to run. For example, to run the
currently-loaded program with arguments a, b, and c, use

(gdb) run a b c

If you want to pass input to your program on stdin, you can use process substitution. For example, to run the currently-loaded
program with input ABCDEF on stdin, run

(gdb) run < <(printf 'ABCDEF')

You might also want to start a program, then pause its execution just before the first instruction executes. You can accomplish
this as follows:

(gdb) starti

Note that for some programs (dynamically-linked programs) the location of this first instruction might be surprising!

Breakpoints
To pause a program’s execution at a particular program point, make a breakpoint!

For example, to pause a.out’s execution at the beginning of main1, run

(gdb) break main

Alternatively, if the address of main is 0x800000, you can also use:

(gdb) break *0x800000

notice the * symbol used to indicate an address.

Then, when you execute the run command, you’ll be dropped back into the GDB prompt, and can further inspect the
program’s state.

You might also want to pause only when a particular condition is true. For example, to set a breakpoint at the beginning of
main that activates only when the edi register is 1, run

(gdb) break main if $edi == 1

To list all currently-set breakpoints, run

(gdb) info breakpoints

To remove a breakpoint, use delete or d. For example, to delete the first breakpoint created during this debugging session,
use

(gdb) delete 1

Alternatively, you can delete all the breakpoints with a plain
1This will actually set a breakpoint just after main’s function prologue, but close enough :)

1

(gdb) delete

Resuming Program Execution
To resume program execution after stopping at a breakpoint, use the continue (or c) command. If you keep hitting the same
breakpoint, and want to skip it 10 times in a row, run

(gdb) continue 10

Stepping
Once you’ve hit a breakpoint, you can execute a single instruction using the stepi (or si) command. For example, to run
only the first instruction in main (after its prologue), you might do the following:

(gdb) break main
(gdb) run
(gdb) stepi

You may find that stepi is too fine-grained, particularly when debugging functions that call many other functions, because
stepi executes everything one instruction at a time. In that scenario, consider using the nexti command, which is just like
stepi, but if the current instruction is a call, it automatically continues execution until the called function returns.

Disassembling
To disassemble instructions starting from rip in gdb, use the disas command.

(gdb) b main
Breakpoint 1 at 0x113d
(gdb) run
Starting program: /home/bkallus/a.out
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/usr/lib/libthread_db.so.1".

Breakpoint 1, 0x000055555555513d in main ()
(gdb) disas
Dump of assembler code for function main:

0x0000555555555139 <+0>: push rbp
0x000055555555513a <+1>: mov rbp,rsp

=> 0x000055555555513d <+4>: lea rax,[rip+0xec0] # 0x555555556004
0x0000555555555144 <+11>: mov rdi,rax
0x0000555555555147 <+14>: mov eax,0x0
0x000055555555514c <+19>: call 0x555555555030 <printf@plt>
0x0000555555555151 <+24>: mov eax,0x0
0x0000555555555156 <+29>: pop rbp
0x0000555555555157 <+30>: ret

End of assembler dump.

To disassemble a function that is not currently executing, pass its name as an argument to disas. For example, to disassemble
main, run disas main.

Inspecting Registers
You can examine the current state of the registers as follows:

(gdb) info registers
rax 0x7ffff7ffe2d8 140737354130136
rbx 0x0 0
rcx 0x7ffff7fc5000 140737353895936
rdx 0x0 0
rsi 0x0 0
rdi 0x7fffffffd5e0 140737488344544
rbp 0x0 0x0
rsp 0x7fffffffd5d0 0x7fffffffd5d0
...

2

Inspecting Memory
The x command is used to examine memory. The command has the following format:

x/[Amount to Read][Format of Read][Unit Size] [Address]

For example, to show 3 hexadecimal bytes from 0x7ffff7ffe2d8, run

(gdb) x/3xb 0x7ffff7ffe2d8
0x7ffff7ffe2d8: 0xe8 0xe6 0xff

Here are some format specifiers you may find useful:

• x (hexademical)
• i (instruction)
• s (string)

Here are some size units you may find useful:

• b (1 byte)
• h (2 bytes)
• w (4 bytes)
• g (8 bytes)

Setting Registers
To set a register to a new value, use the set command. For example, to set eax to 5, run

(gdb) set $eax = 5

Getting Help
If you’re unsure about how to use a command, use the help command. For example, to see more information about how the
nexti command works, you might try

(gdb) help nexti

Quirks
• Hitting enter on an empty prompt will re-run the previous command.
• Sometimes a * is needed before address literals, even when there is no dereference occurring. This is very unintuitive.

3

	Debugging
	Opening GDB
	Running Programs in GDB
	Breakpoints
	Resuming Program Execution
	Stepping
	Disassembling
	Inspecting Registers
	Inspecting Memory
	Setting Registers
	Getting Help
	Quirks

