Memory
C OI’rL(,be/‘th

Memory corruption:
because sometimes your
variables just want to
explore the stack on
their own. &%

Assumptions going forward

You have can use linux commands and work within the system
You understand assembly or can figure it out
You can debug using gdb and figure out what a program is doing

Class Format

Lecture followed by demos
|deally one of the classes per week is dedicated to working through
any problems. If there is a lot of content we will have additional short
lectures.
Office hours:

o Monday - me

o Wednesday - Jonah

o Friday - Mohamed

Today -

checksec

Overflow local variable
Overflow return address
Overflow return address
conditions.

Overflow return address
ASLR/PIE

ASLR Defeats

wlith

middle.

e checksec is atool to analyze binary protections.
e Displays details about:
o NX (Non-Executable Stack)
o ASLR (Address Space Layout Randomization)
o Stack Canaries
o RELRO (Relocation Read-Only)

Generic stack 1n a function

int main(int argc, char **argv) {
int local integer;
char local char;

return 0;

return address

rbp <> saved rbp
stack cookie

Local
Variables

rsp .”%’*/

overflow local

return address - libc_start_main

return address - libc_start_main

saved rbp

rbp 0x4140FF8
rsp Ox4140FF8

return address - libc_start_main

saved rbp

rbp 0x4140FF8 3;

return address - libc_start_main

saved rbp

rsp 0x4140FD8 ———— >

rbp 0x4140FF8 3;

return address - libc_start_main

saved rbp

stack cookie

rsp 0x4140FD8 ————— >

0x4141009

return address - libc_start_main
rbp 0x4140FF8 S saved rbp

0x4140FF0 <> stack cookie
onires ———— local.variable 0xd00dd00d

rsp 0x4140FD8 —————— >

0x4141009

return address - libc_start_main
rbp 0x4140FF8 S saved rbp

0x4140FF0 <> stack cookie
onires ———— local.variable 0xd00dd00d

rsp 0x4140FD8 —————— >

buf (rbp-0x20)

0x4141000

return address - libc_start_main
rbp 0x4140FF8 S saved rbp

0x4140FF0 <> stack cookie
0x4140FES <> local.variable 0x41414141

AAAAAAAA

0X4140FEQ <>

AAAAAAAA

rsp 0x4140FD8 —————— >

buf (rbp-0x20)

overflow_return

Ox4141000 return address: 0x4343434343434343
rbp 0x4140FF8 S saved rbp: 0x4242424242424242

AAAAAAAA

0x4140FFO0 <>

rsp: OX4140FE8 ——— >

buf (rbp-0x10)

0x4141000

return address: 0x401196 (win)
rbp 0x4140FF8 saved rbp: 0x4242424242424242

AAAAAAAA

0x4140FFO0 <>

rsp: OX4140FE8 ——— >

buf (rbp-0x10)

overflow_return_with_conditions

overflow_return_middle

Address Space Layout Randomilization

Position Independent Executable

Introduction to ASLR and PIE

What is ASLR?

e ASLR (Address Space Layout Randomization) is a security feature that
randomizes memory addresses to make exploitation harder.
e Prevents predictable memory layout attacks.

What is PIE?

e PIE (Position Independent Executable) allows executables to be loaded at
different addresses, enabling ASLR for the main binary.
e Ensures the entire program benefits from ASLR, not just shared libraries.

How ASLR Works

Memory Layout with ASLR Enabled

e \When a program runs, ASLR randomizes memory locations of:
Stack 7L (Function calls, local variables)

Heap [(Dynamically allocated memory)

Shared libraries g (e.g., libc, libm)

Executable binary (if PIE is enabled) -]

@)
©)
@)
©)

How PIE Works

Non-PIE Executable (Fixed Address)

e Traditional executables have a fixed base address.
e The binary is loaded at the same location every time.
e Example:

0x400000 -> main binary (fixed location)

PIE Executable (Randomized Address)

e Compiling with PIE allows ASLR to randomize the base address of the binary.
e Example:

0x5f0000 -> main binary (different location every time)

Summary

"4 ASLR randomizes memory addresses to prevent predictable exploits.
{4 PIE enables ASLR for the binary itself by making it position-independent.
"4 Check protections with checksec and GDB mappings.

' Bypassing requires memory leaks, partial overwrites, or brute force
techniques.

Defeats:
Partial Overwrites
Data Leaks

Partial Overwrites

Check out the address of win ()

What changes?
What 1s constant?

How can we leverage this?

What 1s a big problem though?

Leaking Data

The flag 1tself
Addresses
Canaries/Cookies

Unitialized data
- Leak info
— Cause effects

Like a child, the stack doesn’t clean
up after 1itself.

— Cookie leak

— Cause effect

Midterm:

@ Drops @ 3pm EST on Friday February
/th via pwn.college

@ Will be open until 3 pm EST Friday
February 14th

® 5 guestions

e 30% of your final grade

Midterm: What you need to know
® Assembly programmilng
® Reverse Englneering
® Memory Corruption
@ All Assembly and RE pwn college
challenges
@ I highly recommend you study
memory corruption
o 6.0/6.1
o 7.0/7.1
o 10.0/10.1
o 12.0/12.1

Midterm: Resources for you

@ John office hours Mon: 2-4

® Jonah office hours Wed: 1-3

® Mohamed office hours Fri:

@ Thursday we will work together 1in
class to clear up any 1SsSues

® Discord

