
Memory
Corruption

1 1

Memory corruption:
because sometimes your
variables just want to
explore the stack on
their own. 🎉

Assumptions going forward

● You have can use linux commands and work within the system
● You understand assembly or can figure it out
● You can debug using gdb and figure out what a program is doing

Class Format

● Lecture followed by demos
● Ideally one of the classes per week is dedicated to working through

any problems. If there is a lot of content we will have additional short
lectures.

● Office hours:
○ Monday - me
○ Wednesday - Jonah
○ Friday - Mohamed

Today -
● checksec
● Overflow local variable
● Overflow return address
● Overflow return address with

conditions.
● Overflow return address middle.
● ASLR/PIE
● ASLR Defeats

● checksec is a tool to analyze binary protections.
● Displays details about:

○ NX (Non-Executable Stack)
○ ASLR (Address Space Layout Randomization)
○ Stack Canaries
○ RELRO (Relocation Read-Only)

Generic stack in a function

int main(int argc, char **argv) {
 int local_integer;
 char local_char;

 return 0;
}

overflow_local

overflow_return

overflow_return_with_conditions

overflow_return_middle

Address Space Layout Randomization

Position Independent Executable

Introduction to ASLR and PIE

What is ASLR?
● ASLR (Address Space Layout Randomization) is a security feature that

randomizes memory addresses to make exploitation harder.
● Prevents predictable memory layout attacks.

What is PIE?
● PIE (Position Independent Executable) allows executables to be loaded at

different addresses, enabling ASLR for the main binary.
● Ensures the entire program benefits from ASLR, not just shared libraries.

How ASLR Works

Memory Layout with ASLR Enabled
● When a program runs, ASLR randomizes memory locations of:

○ Stack 🏗 (Function calls, local variables)
○ Heap 💾 (Dynamically allocated memory)
○ Shared libraries 📦 (e.g., libc, libm)
○ Executable binary (if PIE is enabled) 🔄

How PIE Works

Non-PIE Executable (Fixed Address)
● Traditional executables have a fixed base address.
● The binary is loaded at the same location every time.
● Example:

0x400000 -> main binary (fixed location)

PIE Executable (Randomized Address)
● Compiling with PIE allows ASLR to randomize the base address of the binary.
● Example:

0x5f0000 -> main binary (different location every time)

Summary
✅ ASLR randomizes memory addresses to prevent predictable exploits.
✅ PIE enables ASLR for the binary itself by making it position-independent.
✅ Check protections with checksec and GDB mappings.
✅ Bypassing requires memory leaks, partial overwrites, or brute force
techniques.

Defeats:
Partial Overwrites
Data Leaks

Partial Overwrites

Check out the address of win()

What changes?
What is constant?

How can we leverage this?

What is a big problem though?

Leaking Data
● The flag itself
● Addresses
● Canaries/Cookies

Unitialized data
- Leak info
- Cause effects

Like a child, the stack doesn’t clean
up after itself.

- Cookie leak

- Cause effect

Midterm:
● Drops @ 3pm EST on Friday February

7th via pwn.college
● Will be open until 3 pm EST Friday

February 14th
● 5 questions
● 30% of your final grade

Midterm: What you need to know
● Assembly programming
● Reverse Engineering
● Memory Corruption
● All Assembly and RE pwn college

challenges
● I highly recommend you study

memory corruption
○ 6.0/6.1
○ 7.0/7.1
○ 10.0/10.1
○ 12.0/12.1

Midterm: Resources for you
● John office hours Mon: 2-4
● Jonah office hours Wed: 1-3
● Mohamed office hours Fri:
● Thursday we will work together in

class to clear up any issues
● Discord

