
Assembly
1 1

Assembly language:
Where you write 10
lines of code to
do what one line
of Python can… but
hey, at least
you're closer to
the machine! 🎉

mov x8, 93
mov x0, 0x1337
svc #0

ARM AArch64

li $v0, 4001
li $a0, 0x1337
syscall

MIPS

mov eax, 1
mov ebx, 0x1337
int 0x80

x86

ld a, 0x37
ld b, 0x13
call 0x05

z80

li a7, 93
li a0, 0x1337
ecall

RISC-V

li r0, 1
li r3, 0x1337
sc

PPC

Registers

1. General-Purpose Registers (16 registers)

● 64-bit Registers:
○ RAX, RBX, RCX, RDX (traditional general-purpose registers)
○ RSI, RDI (used for string operations or function arguments)
○ RBP, RSP (base and stack pointers)
○ R8 to R15 (additional general-purpose registers in x86_64)

● These registers can also be accessed in smaller chunks:
○ 32-bit: EAX, EBX, ECX, EDX, etc.
○ 16-bit: AX, BX, CX, DX, etc.
○ 8-bit: AL, BL, CL, DL, etc.

2. Special-Purpose Registers (6 primary ones)

● Instruction Pointer:
○ RIP: Holds the address of the next instruction to execute.

● Flags Register:
○ RFLAGS: Stores flags for arithmetic operations, control flow, etc.

● Segment Registers:
○ CS, DS, SS, ES, FS, GS: Mostly legacy, but FS and GS are still used

in modern x86_64 for things like thread-local storage.

3. Floating-Point and Vector Registers (32 registers)

● XMM Registers (128-bit):
○ XMM0 to XMM15: Used for SIMD (Single Instruction, Multiple Data)

operations.
● YMM Registers (256-bit):

○ YMM0 to YMM15: Used with AVX (Advanced Vector Extensions).
● ZMM Registers (512-bit):

○ ZMM0 to ZMM31: Available on processors with AVX-512 support.
● FPU Registers:

○ ST0 to ST7: Legacy floating-point registers from the x87 FPU
stack.

4. Control and Debug Registers

● Control Registers (4 primary ones):
○ CR0, CR2, CR3, CR4: Used for system-level settings like memory

management.
● Debug Registers (8 registers):

○ DR0 to DR7: Used for setting hardware breakpoints and
debugging.

5. Other Specialized Registers

● Model-Specific Registers (MSRs): Configuration and performance
monitoring.

● Test Registers (legacy): Rarely used today.
● Performance Counters: Used for profiling and optimization.

Operations

1. Arithmetic Operations

● Description: Perform basic mathematical computations.
● Examples:

○ ADD, SUB – Addition and subtraction.
○ MUL, IMUL – Unsigned and signed multiplication.
○ DIV, IDIV – Unsigned and signed division.
○ INC, DEC – Increment and decrement.
○ ADC, SBB – Add and subtract with carry/borrow.

2. Logical Operations

● Description: Perform bitwise and logical computations.
● Examples:

○ AND, OR, XOR – Bitwise AND, OR, and XOR.
○ NOT – Bitwise negation.
○ TEST – Perform a bitwise AND and set flags without storing the

result.
○ CMP – Compare two values by subtracting and setting flags.

3. Data Movement Instructions

● Description: Transfer data between registers, memory, and I/O.
● Examples:

○ MOV – Move data between registers and memory.
○ PUSH, POP – Push and pop values onto/from the stack.
○ LEA – Load the effective address of a memory operand.
○ XCHG – Exchange the contents of two locations.
○ CMOVcc – Conditional move based on flags (e.g., CMOVE,

CMOVNE).

4. Control Flow Instructions

● Description: Alter the flow of execution.
● Examples:

○ JMP – Unconditional jump.
○ JE, JNE, JG, JL, etc. – Conditional jumps based on flags.
○ CALL, RET – Call a procedure and return from it.
○ LOOP – Loop with a counter.

5. String and Memory Operations

● Description: Operate on strings and memory blocks efficiently.
● Examples:

○ MOVSB, MOVSW, MOVSD – Move string data.
○ STOSB, STOSW, STOSD – Store string data.
○ LODSB, LODSW, LODSD – Load string data.
○ CMPSB, CMPSW, CMPSD – Compare string data.
○ SCASB, SCASW, SCASD – Scan string data.

6. Shift and Rotate Instructions

● Description: Shift and rotate bits in registers or memory.
● Examples:

○ SHL, SHR – Shift left and right logically.
○ SAR – Shift right arithmetically.
○ ROL, ROR – Rotate bits left and right.
○ RCL, RCR – Rotate bits through the carry flag.

7. Input/Output Instructions

● Description: Read from or write to I/O ports.
● Examples:

○ IN, OUT – Read from and write to an I/O port.
○ INSB, INSW, INSD – Input from port to string.
○ OUTSB, OUTSW, OUTSD – Output string to port.

8. Floating-Point and SIMD Instructions

● Description: Perform floating-point arithmetic and vectorized
operations.

● Examples:
○ FADD, FSUB, FMUL, FDIV – Floating-point arithmetic.
○ MOVAPS, ADDPS, MULPS – SIMD operations with packed

single-precision floats.
○ PADDQ, PSLLD – Integer SIMD operations.
○ SQRTPS, MINPS – Specialized SIMD instructions.

9. System-Level Instructions

● Description: Manage processor state, system calls, and privileged
operations.

● Examples:
○ SYSCALL, SYSRET – System call and return (Linux and

Windows).
○ CPUID – Get processor information.
○ HLT – Halt the processor.
○ INT n – Trigger a software interrupt.
○ IRET – Return from an interrupt handler.

10. Miscellaneous Instructions

● Description: Instructions that don't fit cleanly into other categories.
● Examples:

○ NOP – No operation.
○ PAUSE – Hint to the CPU to reduce power or delay.
○ XLAT – Translate a byte using a lookup table.
○ UD2 – Undefined instruction (for debugging purposes).

syscall

What is syscall?

● The syscall instruction is used to make system calls in x86_64
architecture.

● It transitions control from user mode to kernel mode, allowing
programs to request services from the operating system (e.g., file I/O,
process management).

How syscall Works

1. Registers Used for Arguments:
○ System call number: RAX
○ Arguments:

■ RDI: First argument
■ RSI: Second argument
■ RDX: Third argument
■ R10: Fourth argument
■ R8: Fifth argument
■ R9: Sixth argument

How syscall Works

2. Registers Affected:

○ Return value: Stored in RAX after the syscall.
○ Flags: RFLAGS may change based on syscall results.

How syscall Works

3. Instruction Flow:

○ Load the syscall number into RAX.
○ Load any required arguments into the appropriate registers.
○ Execute syscall.
○ Check the return value in RAX.

What is the call Instruction?

● The call instruction is used to invoke a subroutine (function).
● It performs two key tasks:

1. Pushes the return address (the address of the next instruction
after call) onto the stack.

2. Transfers control to the subroutine by jumping to the specified
address.

How call Works

1. Push Return Address:
○ The address of the instruction immediately after the call is

pushed onto the stack.
○ This ensures the program knows where to return after the

subroutine finishes.
2. Jump to Target Address:

○ Control is transferred to the subroutine by jumping to the target
address or label.

Key Points:

1. Pairs with ret:
○ The subroutine uses ret to pop the return address from the stack

and jump back.
2. Indirect Calls:

○ You can use call with a register or memory address for indirect
subroutine calls:

○
mov rax, my_function

call rax

Writing, Compiling

> vi input.s

.intel_syntax noprefix

.globl _start

_start:
 mov rax, 60
 mov rdi, 1337
 syscall

1a. assemble

● as -o output.o input.s

What is an Object File?

● An intermediate binary file produced by the assembler (e.g., as in
GNU toolchain).

● Contains machine code and metadata required for linking and
creating an executable.

Common Tools to Inspect Object Files

1. objdump: Disassembles and analyzes the object file.
○ Example: objdump -d input.o (disassembles the .text

section).
2. readelf: Displays the object file structure.

○ Example: readelf -a input.o (shows all sections, symbols,
and relocation info).

Takeaways

● Object files are not executables but are crucial for the linking stage.
● They combine code, data, and metadata to facilitate building the final

binary.

1b. Manual linking

● ld -o my-elf output.o

Definition:

● Linking is the process of combining object files and libraries into a
single executable binary.

● It resolves references between symbols (e.g., functions, variables)
defined in different files.

Two Types of Linking:

1. Static Linking:
○ Libraries are directly embedded into the executable.
○ Produces a standalone binary but increases size.

2. Dynamic Linking:
○ External libraries are loaded at runtime.
○ Reduces binary size but depends on system-installed libraries.

Why Linking Matters?

● Combines code from multiple sources.
● Resolves function and variable dependencies.
● Optimizes and prepares a binary for execution.

Key Steps Performed by ld:

1. Symbol Resolution:
○ Matches undefined symbols (e.g., printf) to their definitions in

libraries or other object files.
2. Relocation:

○ Adjusts memory addresses for symbols and code to match the
final binary layout.

3. Section Merging:
○ Combines similar sections (e.g., .text, .data) from different

object files.
4. Library Linking:

○ Includes required library functions based on symbol usage.

1c. Pull out code

● objcopy --dump-section .text=code my-elf

2. Assemble and Link one step

● gcc -nostdlib -static -o my-elf input.s

3. Compile straight to bytes
> vi input.s

BITS 64

start:
mov rdi, 1337
mov rax, 60
syscall

● nasm -f bin input.s

4. pwntools

Running and Debugging

● gdb: General-purpose debugger for assembly and other languages.
● pwntools: Python library with built-in debugging utilities.
● strace: Traces system calls for insight into program behavior.

What is gdb?

● The GNU Debugger (gdb) allows you to:
○ Step through assembly instructions.
○ Inspect registers and memory.
○ Set breakpoints to pause execution.

gdb program

> break *0x401000 # Set a breakpoint at an address

> run # Run the program

> stepi # Step through instructions

> info registers # Check register state

> x/10xw $rsp # Examine 10 words at RSP

What is pwntools?

● Python library for binary exploitation and debugging.
● Provides tools for dynamic debugging using scripts.

What is strace?

● A tool to trace system calls made by a program.
● Helps debug issues related to:

○ File I/O.
○ Memory allocation.
○ Permissions or resource errors.

The Stack

Definition:

● The stack is a region of memory used for temporary storage in
programs.

● It operates in a Last In, First Out (LIFO) manner.

Key Characteristics:

1. Dynamic Allocation:
○ Automatically allocates and deallocates memory during function

calls.
2. Directional Growth:

○ On x86_64, the stack grows downward (toward lower memory
addresses).

3. Managed by Registers:
○ RSP: Stack Pointer (points to the top of the stack).
○ RBP: Base Pointer (used for referencing local variables).

Why Use the Stack?

● Function Calls: Store return addresses, arguments, and local
variables.

● Temporary Storage: Efficient for short-lived data.
● Control Flow: Helps manage recursive and nested functions.

Basic Operations:

1. Push: Adds data to the top of the stack.
○ Decreases RSP.

push rax ; Store RAX on the stack

2. Pop: Removes data from the top of the stack.
○ Increases RSP.

pop rax ; Restore the top value into RAX

Function Call Example:

1. Caller pushes arguments onto the stack.
2. The return address is pushed automatically during call.
3. The callee allocates space for local variables.

Calling Conventions:

● Defines how arguments, return values, and stack management are
handled.

● x86_64 Linux (System V ABI):
○ Registers: First 6 arguments in RDI, RSI, RDX, RCX, R8, R9.
○ Stack: Additional arguments and return address.

Prologue (Callee Setup):

Save the previous base pointer:

push rbp

mov rbp, rsp

Allocate space for local variables:

sub rsp, <size>

Epilogue (Callee Cleanup):

Deallocate local variables:

add rsp, <size>

Restore the base pointer and return:

pop rbp

ret

> demos

> challenges

1. Hello, World! (Data Movement + String Operations)

● Goal: Print "Hello, World!" to the screen using a syscall.
● Instructions: mov, syscall.
● Hints:

○ Use the write syscall (rax = 1) with the string in memory.
○ Pass the file descriptor (stdout = 1), string pointer, and length.

2. Add Two Numbers (Arithmetic Operations)

● Goal: Prompt the user to input two numbers, add them, and print the
result.

● Instructions: add, mov, syscall.
● Hints:

○ Use the read syscall to get input.
○ Convert ASCII input to integers and use add.

3. Compare Two Numbers (Control Flow)

● Goal: Compare two user-provided numbers and print which one is
larger.

● Instructions: cmp, jne, jl, jmp.
● Hints:

○ Use cmp to compare values and conditional jumps (jl, jg) to
handle output.

4. Implement a Simple Loop (Control Flow + Arithmetic)

● Goal: Print numbers 1 through 10 in a loop.
● Instructions: mov, add, cmp, jmp.
● Hints:

○ Use a counter in a register.
○ Use cmp and jmp to create a loop.

5. Bitwise Manipulation (Logical Operations)

● Goal: Toggle the case of a string (convert uppercase to lowercase and
vice versa).

● Instructions: xor, and, or.
● Hints:

○ Use bitwise xor with 0x20 to toggle case.
○ Loop through each character in the string.

6. Shift and Rotate (Bitwise Operations)

● Goal: Multiply a number by 16 using a left shift.
● Instructions: shl, sar, mov.
● Hints:

○ Use shl to shift bits to the left.
○ Print the result using the write syscall.

7. Basic String Reverse (String and Memory Operations)

● Goal: Reverse a user-provided string.
● Instructions: movsb, rep, jmp.
● Hints:

○ Use pointers to swap characters in memory.
○ Iterate until the midpoint of the string.

8. Implement an XOR Cipher (Logical Operations)

● Goal: Encrypt a string using an XOR cipher with a fixed key.
● Instructions: xor, mov, loop.
● Hints:

○ XOR each character with a key (e.g., 0xAA).
○ Print the encrypted result.

9. Smallest Number in an Array (Arithmetic + Loops)

● Goal: Find the smallest number in an array of integers.
● Instructions: cmp, mov, jmp.
● Hints:

○ Use a register to store the smallest number.
○ Iterate through the array with a loop, updating the register when a

smaller number is found.

10. Fibonacci Sequence (Advanced Control Flow + Arithmetic)

● Goal: Compute and print the first 10 numbers in the Fibonacci
sequence.

● Instructions: mov, add, push, pop, jmp.
● Hints:

○ Use two registers to store the last two Fibonacci numbers.
○ Loop to calculate and print each new number.

